Scaling up a TKGm cluster vertically

It is very simple to scale-out a TKGm cluster. The command

tanzu cluster scale cluster_name --controlplane-machine-count 5 --worker-machine-count 10

will easily do this for you, this is known as horizontal scale-out. But have you thought of how to scale-up control plane or worker nodes with more CPU or memory?

This post discusses how you can scale up a TKGm worker node, tl;dr how to increase or decrease worker node CPU, RAM, disk.

Getting started

It is not a simple process to scale-up as it is to scale-out. Follow the steps below to scale-up your TKGm cluster.

Step 1.

Run the following command to obtain the list of vSphere machine templates that TKGm uses to deploy control plane and worker nodes.

kubectl get vspheremachinetemplate
NAME                             AGE
tkg-ssc-control-plane            3d1h
tkg-ssc-worker                   3d1h
tkg-workload-01-control-plane    3d
tkg-workload-01-worker           3d

You can see that there are four machine templates.

Lets say we want to increase the size of the worker nodes in the tkg-workload-01 cluster.

Lets describe the tkg-workload-01-worker machine template.

kubectl describe vspheremachinetemplate tkg-workload-01-worker
Name:         tkg-workload-01-worker
Namespace:    default
Labels:       <none>
Annotations:  <none>
API Version:  infrastructure.cluster.x-k8s.io/v1alpha3
Kind:         VSphereMachineTemplate
Metadata:
  Creation Timestamp:  2021-10-29T14:11:25Z
  Generation:          1
  Managed Fields:
    API Version:  infrastructure.cluster.x-k8s.io/v1alpha3
    Fields Type:  FieldsV1
    fieldsV1:
      f:metadata:
        f:annotations:
          .:
          f:kubectl.kubernetes.io/last-applied-configuration:
      f:spec:
        .:
        f:template:
          .:
          f:spec:
            .:
            f:cloneMode:
            f:datacenter:
            f:datastore:
            f:diskGiB:
            f:folder:
            f:memoryMiB:
            f:network:
              .:
              f:devices:
            f:numCPUs:
            f:resourcePool:
            f:server:
            f:storagePolicyName:
            f:template:
    Manager:      kubectl-client-side-apply
    Operation:    Update
    Time:         2021-10-29T14:11:25Z
    API Version:  infrastructure.cluster.x-k8s.io/v1alpha3
    Fields Type:  FieldsV1
    fieldsV1:
      f:metadata:
        f:ownerReferences:
          .:
          k:{"uid":"be507594-0c05-4d30-8ed6-56811733df23"}:
            .:
            f:apiVersion:
            f:kind:
            f:name:
            f:uid:
    Manager:    manager
    Operation:  Update
    Time:       2021-10-29T14:11:25Z
  Owner References:
    API Version:     cluster.x-k8s.io/v1alpha3
    Kind:            Cluster
    Name:            tkg-workload-01
    UID:             be507594-0c05-4d30-8ed6-56811733df23
  Resource Version:  45814
  UID:               fc1f3d9f-078f-4282-b93f-e46593a760a5
Spec:
  Template:
    Spec:
      Clone Mode:   fullClone
      Datacenter:   /TanzuPOC
      Datastore:    tanzu_ssd_02
      Disk Gi B:    40
      Folder:       /TanzuPOC/vm/tkg-vsphere-workload
      Memory Mi B:  16384
      Network:
        Devices:
          dhcp4:            true
          Network Name:     /TanzuPOC/network/TKG-wkld
      Num CP Us:            4
      Resource Pool:        /TanzuPOC/host/Workload Cluster 1/Resources/tkg-vsphere-workload
      Server:               vcenter.vmwire.com
      Storage Policy Name:
      Template:             /TanzuPOC/vm/ubuntu-2004-kube-v1.21.2+vmware.1
Events:                     <none>

You can see that this machine template has 16GB of RAM and 4 vCPUs. Lets say we want to increase workers to 120GB of RAM and 24 vCPUs, how would we do this?

Step 2.

We need to clone the currently in use machine template into a new one and then apply it.

kubectl get vspheremachinetemplate tkg-workload-01-worker -o yaml > new-machine-template.yaml

Step 3.

Now that we have exported the current machine template into a new yaml file, we can edit it to suit our needs. Edi the file and make the changes to the file.

apiVersion: infrastructure.cluster.x-k8s.io/v1alpha3
kind: VSphereMachineTemplate
metadata:
  annotations:
    kubectl.kubernetes.io/last-applied-configuration: |
      {"apiVersion":"infrastructure.cluster.x-k8s.io/v1alpha3","kind":"VSphereMachineTemplate","metadata":{"annotations":{},"creationTimestamp":"2021-10-29T14:11:25Z","generation":1,"name":"tkg-workload-01-worker-scale","namespace":"default","ownerReferences":[{"apiVersion":"cluster.x-k8s.io/v1alpha3","kind":"Cluster","name":"tkg-workload-01","uid":"be507594-0c05-4d30-8ed6-56811733df23"}],"resourceVersion":"45814","uid":"fc1f3d9f-078f-4282-b93f-e46593a760a5"},"spec":{"template":{"spec":{"cloneMode":"fullClone","datacenter":"/TanzuPOC","datastore":"tanzu_ssd_02","diskGiB":40,"folder":"/TanzuPOC/vm/tkg-vsphere-workload","memoryMiB":122880,"network":{"devices":[{"dhcp4":true,"networkName":"/TanzuPOC/network/TKG-wkld"}]},"numCPUs":24,"resourcePool":"/TanzuPOC/host/Workload Cluster 1/Resources/tkg-vsphere-workload","server":"tanzuvcenter01.ete.ka.sw.ericsson.se","storagePolicyName":"","template":"/TanzuPOC/vm/ubuntu-2004-kube-v1.21.2+vmware.1"}}}}
  creationTimestamp: "2021-11-01T11:18:08Z"
  generation: 1
  name: tkg-workload-01-worker-scale
  namespace: default
  ownerReferences:
  - apiVersion: cluster.x-k8s.io/v1alpha3
    kind: Cluster
    name: tkg-workload-01
    uid: be507594-0c05-4d30-8ed6-56811733df23
  resourceVersion: "1590589"
  uid: 8697ec4c-7118-4ff0-b4cd-a456cb090f58
spec:
  template:
    spec:
      cloneMode: fullClone
      datacenter: /TanzuPOC
      datastore: tanzu_ssd_02
      diskGiB: 40
      folder: /TanzuPOC/vm/tkg-vsphere-workload
      memoryMiB: 122880
      network:
        devices:
        - dhcp4: true
          networkName: /TanzuPOC/network/TKG-wkld
      numCPUs: 24
      resourcePool: /TanzuPOC/host/Workload Cluster 1/Resources/tkg-vsphere-workload
      server: vcenter.vmwire.com
      storagePolicyName: ""
      template: /TanzuPOC/vm/ubuntu-2004-kube-v1.21.2+vmware.1

Change lines 6 and 9 by appending a new name to the machine template, you’ll notice that the original name was tkg-workload-01-worker, I appended “scale” to it so the new name of this new machine template is tkg-workload-01-worker-scale.

Step 4.

We can now apply the new machine template with this command

kubectl apply –f new-machine-template.yaml

We can check that the new machine template exists by running this command

kubectl get vspheremachinetemplate
NAME                             AGE
tkg-ssc-control-plane            3d1h
tkg-ssc-worker                   3d1h
tkg-workload-01-control-plane    3d
tkg-workload-01-worker           3d
tkg-workload-01-worker-scale     10s

Step 5.

Now we can apply the new machine template to our cluster.

Before doing that, we need to obtain the machine deployment details for the tkg-workload-01 cluster, we can get this information by running these commands

kubectl get MachineDeployment
NAME                   PHASE     REPLICAS   READY   UPDATED   UNAVAILABLE
tkg-ssc-md-0           Running   3          3       3
tkg-workload-01-md-0   Running   4          4       4

We are interested in the tkg-workload-01-md-0 machine deployment so lets describe it.

kubectl describe MachineDeployment tkg-workload-01-md-0
Name:         tkg-workload-01-md-0
Namespace:    default
Labels:       cluster.x-k8s.io/cluster-name=tkg-workload-01
Annotations:  machinedeployment.clusters.x-k8s.io/revision: 3
API Version:  cluster.x-k8s.io/v1alpha3
Kind:         MachineDeployment
Metadata:
  Creation Timestamp:  2021-10-29T14:11:25Z
  Generation:          7
  Managed Fields:
    API Version:  cluster.x-k8s.io/v1alpha3
    Fields Type:  FieldsV1
    fieldsV1:
      f:metadata:
        f:annotations:
          .:
          f:kubectl.kubernetes.io/last-applied-configuration:
        f:labels:
          .:
          f:cluster.x-k8s.io/cluster-name:
      f:spec:
        .:
        f:clusterName:
        f:selector:
          .:
          f:matchLabels:
            .:
            f:cluster.x-k8s.io/cluster-name:
        f:template:
          .:
          f:metadata:
            .:
            f:labels:
              .:
              f:cluster.x-k8s.io/cluster-name:
              f:node-pool:
          f:spec:
            .:
            f:bootstrap:
              .:
              f:configRef:
                .:
                f:apiVersion:
                f:kind:
                f:name:
            f:clusterName:
            f:infrastructureRef:
              .:
              f:apiVersion:
              f:kind:
            f:version:
    Manager:      kubectl-client-side-apply
    Operation:    Update
    Time:         2021-10-29T14:11:25Z
    API Version:  cluster.x-k8s.io/v1alpha3
    Fields Type:  FieldsV1
    fieldsV1:
      f:spec:
        f:template:
          f:spec:
            f:infrastructureRef:
              f:name:
    Manager:      kubectl-edit
    Operation:    Update
    Time:         2021-11-01T11:25:51Z
    API Version:  cluster.x-k8s.io/v1alpha3
    Fields Type:  FieldsV1
    fieldsV1:
      f:spec:
        f:replicas:
    Manager:      tanzu-plugin-cluster
    Operation:    Update
    Time:         2021-11-01T12:33:35Z
    API Version:  cluster.x-k8s.io/v1alpha3
    Fields Type:  FieldsV1
    fieldsV1:
      f:metadata:
        f:annotations:
          f:machinedeployment.clusters.x-k8s.io/revision:
        f:ownerReferences:
          .:
          k:{"uid":"be507594-0c05-4d30-8ed6-56811733df23"}:
            .:
            f:apiVersion:
            f:kind:
            f:name:
            f:uid:
      f:status:
        .:
        f:availableReplicas:
        f:observedGeneration:
        f:phase:
        f:readyReplicas:
        f:replicas:
        f:selector:
        f:updatedReplicas:
    Manager:    manager
    Operation:  Update
    Time:       2021-11-01T14:30:38Z
  Owner References:
    API Version:     cluster.x-k8s.io/v1alpha3
    Kind:            Cluster
    Name:            tkg-workload-01
    UID:             be507594-0c05-4d30-8ed6-56811733df23
  Resource Version:  1665423
  UID:               5148e564-cf66-4581-8941-c3024c58967e
Spec:
  Cluster Name:               tkg-workload-01
  Min Ready Seconds:          0
  Progress Deadline Seconds:  600
  Replicas:                   4
  Revision History Limit:     1
  Selector:
    Match Labels:
      cluster.x-k8s.io/cluster-name:  tkg-workload-01
  Strategy:
    Rolling Update:
      Max Surge:        1
      Max Unavailable:  0
    Type:               RollingUpdate
  Template:
    Metadata:
      Labels:
        cluster.x-k8s.io/cluster-name:  tkg-workload-01
        Node - Pool:                    tkg-workload-01-worker-pool
    Spec:
      Bootstrap:
        Config Ref:
          API Version:  bootstrap.cluster.x-k8s.io/v1alpha3
          Kind:         KubeadmConfigTemplate
          Name:         tkg-workload-01-md-0
      Cluster Name:     tkg-workload-01
      Infrastructure Ref:
        API Version:  infrastructure.cluster.x-k8s.io/v1alpha3
        Kind:         VSphereMachineTemplate
        Name:         tkg-workload-01-worker
      Version:        v1.21.2+vmware.1
Status:
  Available Replicas:   4
  Observed Generation:  7
  Phase:                Running
  Ready Replicas:       4
  Replicas:             4
  Selector:             cluster.x-k8s.io/cluster-name=tkg-workload-01
  Updated Replicas:     4
Events:
  Type    Reason           Age                 From                          Message
  ----    ------           ----                ----                          -------
  Normal  SuccessfulScale  90s (x2 over 114m)  machinedeployment-controller  Scaled down MachineSet "tkg-workload-01-md-0-647645ddcd" to 4

The line that we are interested in is line 38. This is the current machine template that this cluster is using, you’ll notice that it is of course using the original spec, what we need to do is change it to the new spec that we created earlier. If you remember, we named that one tkg-workload-01-worker-scale.

Step 6.

kubectl edit MachineDeployment tkg-workload-01-md-0
# Please edit the object below. Lines beginning with a '#' will be ignored,
# and an empty file will abort the edit. If an error occurs while saving this file will be
# reopened with the relevant failures.
#
apiVersion: cluster.x-k8s.io/v1alpha3
kind: MachineDeployment
metadata:
  annotations:
    kubectl.kubernetes.io/last-applied-configuration: |
      {"apiVersion":"cluster.x-k8s.io/v1alpha3","kind":"MachineDeployment","metadata":{"annotations":{},"labels":{"cluster.x-k8s.io/cluster-name":"tkg-workload-01"},"name":"tkg-workload-01-md-0","namespace":"default"},"spec":{"clusterName":"tkg-workload-01","replicas":4,"selector":{"matchLabels":{"cluster.x-k8s.io/cluster-name":"tkg-workload-01"}},"template":{"metadata":{"labels":{"cluster.x-k8s.io/cluster-name":"tkg-workload-01","node-pool":"tkg-workload-01-worker-pool"}},"spec":{"bootstrap":{"configRef":{"apiVersion":"bootstrap.cluster.x-k8s.io/v1alpha3","kind":"KubeadmConfigTemplate","name":"tkg-workload-01-md-0"}},"clusterName":"tkg-workload-01","infrastructureRef":{"apiVersion":"infrastructure.cluster.x-k8s.io/v1alpha3","kind":"VSphereMachineTemplate","name":"tkg-workload-01-worker"},"version":"v1.21.2+vmware.1"}}}}
    machinedeployment.clusters.x-k8s.io/revision: "3"
  creationTimestamp: "2021-10-29T14:11:25Z"
  generation: 7
  labels:
    cluster.x-k8s.io/cluster-name: tkg-workload-01
  name: tkg-workload-01-md-0
  namespace: default
  ownerReferences:
  - apiVersion: cluster.x-k8s.io/v1alpha3
    kind: Cluster
    name: tkg-workload-01
    uid: be507594-0c05-4d30-8ed6-56811733df23
  resourceVersion: "1665423"
  uid: 5148e564-cf66-4581-8941-c3024c58967e
spec:
  clusterName: tkg-workload-01
  minReadySeconds: 0
  progressDeadlineSeconds: 600
  replicas: 4
  revisionHistoryLimit: 1
  selector:
    matchLabels:
      cluster.x-k8s.io/cluster-name: tkg-workload-01
  strategy:
    rollingUpdate:
      maxSurge: 1
      maxUnavailable: 0
    type: RollingUpdate
  template:
    metadata:
      labels:
        cluster.x-k8s.io/cluster-name: tkg-workload-01
        node-pool: tkg-workload-01-worker-pool
    spec:
      bootstrap:
        configRef:
          apiVersion: bootstrap.cluster.x-k8s.io/v1alpha3
          kind: KubeadmConfigTemplate
          name: tkg-workload-01-md-0
      clusterName: tkg-workload-01
      infrastructureRef:
        apiVersion: infrastructure.cluster.x-k8s.io/v1alpha3
        kind: VSphereMachineTemplate
        name: tkg-workload-01-worker-scale
      version: v1.21.2+vmware.1
status:
  availableReplicas: 4
  observedGeneration: 7
  phase: Running
  readyReplicas: 4
  replicas: 4
  selector: cluster.x-k8s.io/cluster-name=tkg-workload-01
  updatedReplicas: 4

The line that we are interested in is line 54. We need to change the machine template from that old one to our new one.

Lets make that change by going down to line 54 and adding “-scale” to the end of that line. Once you save and quit using “:wq!”. Kubernetes will make do a rolling update of your TKGm cluster for you.

Finishing off

Once the rolling update is done, you can check vSphere Web Client for new VMs being cloned and old ones being deleted. You can also run the command below to see the status of the rolling updates.

kubectl get MachineDeployment

You’ll then see that your new worker nodes have been resized without interrupting any of the running pods in the cluster.

Advertisement

Author: Hugo Phan

@hugophan

2 thoughts on “Scaling up a TKGm cluster vertically”

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: